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Abstract  

Among the large number of topologies which have been suggested for Minkowski space, 
the order topology, i.e., the one generated by the positive cone at the origin and its 
translates, turns out to be most peculiar; yet it has some very pleasant properties. For 
example, it is pathwise connected and not arcwise connected and every loop based at a 
point is homotopic to the constant loop at that point; in other words, Minkowski space 
with the order topology is simply connected. 

1. Notation and Terminology 

Since Zeeman (1967) suggested the 'fine topology '  for Minkowski space, 
the space-time continuum of  Special Relativity,  several authors, Nanda (1969, 
1971, 1972), Whiston ( t 972 )  and Vroegindeweij (1973), have suggested new 
topologies satisfying the requirement that the homeomorphism group of  each 
topology is either the group G, generated by the inhomogeneous Lorentz group 
together with dilatations, or its subgroup Go consisting of  elements which are 
order-automorphisms. All these topologies with the exception of  the order 
topology (definitions follow later) are finer than the Euclidean topology and 
are therefore Hausdorff. They are also pathwise connected and not  simply 
connected. The object  of  this paper is to consider the simplest of  all possible 
topologies on Minkowski space, i.e., the order topology (Vroegindeweij, 1973), 

Copyright © 1975 Plenum Publishing Corporation. No part of this publication may be 
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, microfilming, recording, or otherwise, without 
wTitten permission of the publisher. 

393 



394 s .  N A N D A  AND H. K. PANDA 

and point out its peculiarities. In spite of its peculiarities, Minkowski space 
with this topology has a very pleasant property that it is simply connected. 

In what follows, M will denote Minkowski space, i.e., M = {(Xo, x 1, x2, x a) : 
xi are reals} together with the quadratic form Q: 

We have a positive cone K at the origin defined by 

K= {xEM : Q(x) > O, xo> O} 

which gives rise to the usual partial order o n M  as follows: 

x < y ~ * y  - x E K  

Closely associated with the cone K, we have another positive cone L at the 
origin defined by 

L = {xEM: Q(x)>~Oxo > 0 }  

which again defines another partial order on M: 

x ' ~ y ' ~ y  - x E L  

For each x E M, we can have the translates of the positive cones K and L. 

K +x= { y + x : y E K }  
and 

L +x  = {y + x : y E L }  

which we shall denote by K(x) and L(x) respectively. We also define for each 
x E M the cones K*(x) and L*(x) as follows: 

K*(x) = K(x) U {x} 

and 

It is easy to check that 

and, similarly, 

L*(x) =L(x) u {x) 

K*(x) = ~ :x < y  o r x  =y} 

L *(x) = (y :x ~ y o r x  =y} 

The cones {K*(x) :x E M) generate a topology on M which we call the order 
topology (Whiston calls it the Zeeman-order topology). For convenience, we 
shall henceforth call it the K-topology on M and denote the corresponding 
topological space by M__ K. 

As usual, Ira (A), A and A c will mean the interior, closure and complement, 
respectively, of the set A with respect to the topology under consideration. 

2. Properties of  the K-Topology 

The K-topology has very poor separability properties. It is easy to see that 
it is not Hausdorff, it is not even T 1. For example, i f x  < y  then any open set 
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about x will contain y. It is clearly To. It is also not compact though it is 
locally compact because every basic open set K*(x) is a compact neighbour- 
hood of the point x. It is both connected and locally connected. 

A peculiar topological property of the K-topology which we shall use later 
is the following. 

Proposition 2.t .  If  

x E M ,  {x}= { y : y < x ,  ory=x}  

Proof. Since A = [Int (At)] c, it will be worthwhile considering the set 
Int ({x}C), i.e., the interior of the set M - {x}. Note that i fy  <~ x and y 4= x, 
then K*0 ' )  C M - {x}, thus making y an interior point o f M -  {x}. Con- 
versely, these are the only interior points o fM - {x}, for, i fy  < x o ry  = x, 
then K*(y) will contain x and thereforey cannot be an interior point of 
M -  {x}. Thus Int(M - {x}) = 0 '  E M : y  <~x,y ~ x }  or, equivalently, 
[Int (M - {x})] ¢ = {y E M :y < x or y = x} and the proof is complete. 

Since any basic open set of the K- topolo~  is of the form K*(x), it is easy 
to prove that any continuous map f f r o m M  into itself is order-preserving, i.e., 
x <y  ~ f ( x ) < f ( y ) .  Similarly, if the map f i s  one-one t hen f  -1 is continuous 
if and only i f f - I  is order-preserving. Thus the homeomorphisms ofM K are 
precisely the one-one maps ofM K onto itself which are order-automorphisms. 
A direct application of Zeeman's theorem (Zeeman, 1964) will then yield the 
following (we, however, omit the proof since it involves no new techniques). 

Proposition 2.2. The homeomorphism group ofM K is Go. 
Moreover ,  M K has also the following interesting property: 

Proposition 2.3. M K is superconnected i.e., every open set is connected. 

Proof  Let O be an arbitrary open set in M K and assume to the contrary 
that it is disconnected. Then O = O 1 U 02 where O1 • 02 = 0 and O1 and 02 
are non-void open sets in O. Since O itself is open in X, it follows that O 1 and 
02 are also open in X. Choose x E 01 andy E O2 arbitrarily. (This is possible 
since 01 and 02 are non-void.) From the very definition of the topology we 
have x E K*(x) C 01 andy E K*(y) c 02. Note that it is possible to choose 
z E M such that x < z and y < z; thus K*(x) rh K*(y) =# 0. Therefore 
01 (~ O2 g= 0, and this gives a contradiction. The proof is therefore complete. 

Corollary 1. It is also clear from this proof that any two non-void open 
sets o f M  K will have non-void intersection. 

We shall next prove the following 

Proposition 2.4. M K is pathwise connected. 

Proof. Let x and y be arbitrary points in M; choose a point z E K*(x) n 
K*(y). We shall first show that x and z are pathwise connected. Define 
f :  [0, 1] = I  -+ M K as follows: 

{ ;  f o r 0 ~ t < l  
f(t) = for t = 1 
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Note that f - I  (K*(z)) = [0, 1) and f - 1  (K*(x)) = [0, 1 ] ; hence for any open 
set Oz and Ox containing z and x respec t i ve ly , f - l (Oz)  = [0, 1) i f x  ~ Oz; 
f - l ( O z )  = [0, l ]  if x@ Oz a n d f - l ( o x )  = [0, 1]. T h u s f : I - + M  K is con- 
tinuous with f (0)  = z and f (1)  = x. Similarly, y and z are pathwise connected 
and therefore x and y are pathwise connected. 

One of  the nicest properties of  Zeeman's fine topology is the existence of  
order-preserving paths. (A path f i s  said to be order-preserving if and only if 
t I < t 2 ~ f t  I < f t  2 where t 1 and t2 C l a n d  tl  < t2 means the usual order on 
the real line.) Such paths have been interpreted as the paths of  freely moving 
particles. In contrast to this, we have the following. 

Proposition 2.5. No path f :  I - + M  K is order-preserving. 

Proof. Suppose on the contrary that f :  I - > M  K is continuous and that 
tl < t2 ~ f t l  < f t2 for every pair o f  points t I and t2 hal. Let t E (0, 1). 
Continuity of  f implies  t h a t f - l ( K * ( f t ) )  is an open set about t. Therefore, 
there is an e > 0 such that (t - e, t + e) C f - 1  (K,OOt)) or, equivalently, 
f ( t  - e, t + e) C K*(f t) .  If we choose a point t 'e(t  - e, 0 then we have t' < t 
and f t '  E K*( f t )  i.e., f t  < ft ' ,  thus giving a contradiction to our assumption 
that f i s  order-preserving. 

We shall now make a simple application o f  the Baire category theorem 
(which states that a complete metric space cannot be expressed as a countable 
union of  nowhere dense sets) to show that M K is not arcwise connected. (A 
topological space X is said to be arcwise connected iff for every pair o f  points 
x and y there is a continuous one-one map from the unit interval to X such 
that f (0)  = x and f (1)  = y . )  In fact we shall show that no continuous map 
from I to M " can be one-one. 

Proposition 2.6. If f : l - +  M K is a continuous map, then there is a point 
to ~ I and an interval V with t o E V c I such that f (V)  = fro. 

Proof. Let t E L Continuity o f f  implies that f - 1  (K*(ft))  is an open set in 
I containing t. Therefore it is possible to choose a real number 0 t > 0 such that 
(t - Or, t + Or) C f - 1  (K*(ft))  or, equivalently, f ( t  - Or, t + Or) C K*(f t) .  Thus, 
corresponding to every t C I, we have a real number 0 t > 0. This enables us to 
define a real-valued function h on I as follows: h(t) = 0 t. Note that h satisfies 
the following two conditions: (i) h(t) > 0 for every t E I and (ii) f ( t  - ht ,  
t + ht)  C K*~ t ) .  

Define A n = {t E I : h(t)  > 1/n). Since h(t) = Ot > 0 for every t C I, it follows 
that every t E t is an element of  some A n. Thus I = Un= 1An . I, being a com- 
plete metric space, belongs to the second category and therefore it cannot be 
expressed as a countable union of  nowhere dense sets. Consequently at least 
one o f  these An's, say A m ,  is not  nowhere dense, i.e., Int (-~m) 4: 0, where 
Int (A) denotes the interior of  the set A and bar denotes closure with respect 
to the usual topology on I. Int (Am) is an open set and hence a countable 
union of  disjoint open intervals; choose an interval U C Int (-~m)- Let 
U A A m  = Bin; obviously then Brn is dense in U. Note moreover that for 
every t E B m , h ( O  > 1/rn. 
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Choose a point to E Bin. Since U is open and t o is an interior point of  U, 
there is a k > 0 such that (t o - k, to + k) C U. Since a smaller k > 0 will also 
satisfy this inclusion relation, we choose k such that k <~ ½m. Let V = 
(to - k, to + k) and Cm = V ~ Bin, then Cm is dense in the interval K 

We have now Cm C Bm C Am. Therefore, for every t @ Cm, h(t) ~ 1/m; 
consequent ly , f [ t  - 1/m, t + 1/m] C K*(ft). Moreover, since k ~ ½m, it 
follows that f [ t  - k, t + k] C K*(ft). But t ECm is arbitrary, hence 
f (V)  C K*(ft) for every t @ Cm. 

We now claim that f m a p s  the entire interval V to a single point. First, suppose 
to the contrary that there exist t 1 and t 2 in Cm such that t l  :~ t2 with f ( t l )  v ~ 
f(t2).  We will then have the following three cases to consider. 

(i) I f f t  I <ft2, then f (V)  C K*(ft:) N K*(ft2) = K*(ft2) which is 
impossible for ftx q~ K*(ft2). 

(ii) Similarly it is impossible to have ft2 < f t t .  
(iii) Finally, i f f t l  and ft2 are not comparable, i.e. neither .ftl < ft2 nor 

ft2 < f t : ,  then we shall have f (V)  C K*(ft:) A K*(ft2) which is again 
not possible for K*(ftl) C~ K*(ft2) will contain neither Jet 1 n o r  ft2. 

Thus it is impossible to have t 1 and t 2 in Cm with t 1 4: t2 and f t :  --/:ftz; 
therefore all points of  Crn are mapped to a single point fto. It will now be 
enough to show that other points of  V are also mapped to the same point. 

Note that since f is continuous, f(Cm) C f(Cm) i.e., f (V)  C {fto}. This 
inclusion, together with the inclusion f (V)  c K*(fto), imply that f (V)  C 
K*(fto) N {rio}- By Proposition 2.1, we have {fro} = {y @ M : y <fro or 
Y = fro}; on the other hand, K*(fto) = {y E M : fto < y  or fie = Y}. Thus, 
f (V) C K*(fto) c3 {rio} = ~to} and the proof  is complete. 

3. The Fundamental Group of  M x 

In spite of  the pathological nature of  the K- topology ,M x has the most 
interesting property that it is simply connected. We shall now prove the 
following 

Proposition 3.1. Any loop f at a point x is homotopic  (Greenburg, 1967) to 
the constant loop ex at the point x. 

Proof Let f b e  a loop at the point x CM,  i .e . , f :  I-+M K is a continuous 
map with f (0 )  = f (1 )  = x. Continuity of  f implies that f ( / )  is compact.  Therefore 
the open cover (K*(f(p))}p~ for f ( I )  admits a finite subcover 
{K*(f(Pi))}i = 1 , 2  . . . . .  n .  Choose a E M with a < f(Pi) for every i E { t ,  2 . . . . .  n}. 
This means that K*(f(pi)) C K*(a) for every i. We therefore have f ( / )  C 

n Ui= aK (f(Pi)) C K*(a). 
We will now construct a continuous function F : I  x I ~ M K such that 

F(0,  t) = f ( t )  and F(1 ,  t) = ex(t) = x for every t @ I and F(s, O) = F(s, 1) = x 
for every s E I. This will show that the loop f i s  homotopic  to the constant 
loop e x defined by ex (t) = x for every t ~ L Note that since f :  I-+ M K is 
continuous, f -1  (K*(x)) is an open set in I;  call it Ox. I - Ox is then a closed 
set in I. We now define the continuous map F : I x I ~ M K as follows: 
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F ( s , t ) = l !  (t) 

ex (t) 

f o r s E  [0, 1 /2 ) , tE I  
f o r s =  1/2, tE Ox 
f o r s =  1/2, t E I - Ox 
for s E (1/2, l ] , t E I  

From the construction, it is clear that F(0, t) = f( t) ,  F(1, t) = ex(t); F(s, O) = 
x and F(s, 1) = x, V s E L It remains, however, to show that F,  as defined 
above, is continuous. It is obvious that F ( / x / )  = f ( / )  U (a}. Since F(/)  C 
K*(a) by our choice of a, it follows that F-1 (K*(a)) = 1 x L Furthermore, 
for any point z Ef(1), f- l(K*(z))  = Oz is an open set in/.  We shall now 
consider two cases, namely when (i) z < x  and when (ii) z < x .  In the first 
case K*(z) D K*(x); in the second case, x ~ K*(z). In the first case, 
F-X(K*(z)) = ([0, I /2) x Oz} U ( Ix  Ox} U ((1/2, 1] x /3  which is a union 
of three open sets in I x I and is therefore open. In the second case, when 
x ~K*(z), we have F-I(K*(z)) = [0, 1/2) x Oz which is again an open set in 
I x L Thus in any case, the inverse image by F of basic open sets in M K are 
open in I x I and this proves our assertion that F is continuous. 

Combining Proposition 2.4 and Proposition 3.1, we have the following 

Theorem. M K is simply connected. 

4. Final Remarks 

It is not very hard to see that the K-topology is not comparable to the 
Euclidean topology. Its poor separability properties indicate that it has ' too 
few' open sets. One would then expect such a topology to be minimal in the 
sense that no strictly weaker topology on M can have the homeomorphism 
group G O . As the following example will indicate, such an assumption is false. 

Example. It is easy to see that the family of sets (L*(x)}x~M generates a 
topology on M. Let us call it the L-topology and denote the corresponding 
topological space by M L. We claim that the K-topology is strictly finer than 
the L-topology. To prove this assertion, note first of all that for every basic 
open set L *(x) of the L-topology, L *(x) = U (K*(z) : z E L*(x)}; consequently, 
every L-open set is K-open. Conversely, it is obvious that no K*(x) is an open 
set in the L-topology. Thus the L-topology is strictly weaker than the K- 
topology. That the homeomorphism group of the L-topology is also Go is 
easy to prove. We therefore have the following. 

Proposition 4.1. The K-topology on M is not minimal. 
Most of the topological properties of the K-topology are also shared by the 

L-topology. For example, one can have the same constructions to prove that 
M L is superconnected, pathwise connected (and not arcwise connected) and 
simply connected. Much of this situation relating the order structure with the 
topological structure can also be put in a more general setting and one can 
have the same sort of  results as proved in this paper. 
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